

Prüfstrategien und die Statistik dahinter

QUALITY ASSURANCE CONSULTING - ANIKA ZART

10/2015- 09/2018 Wirtschaftsingenieurwesen

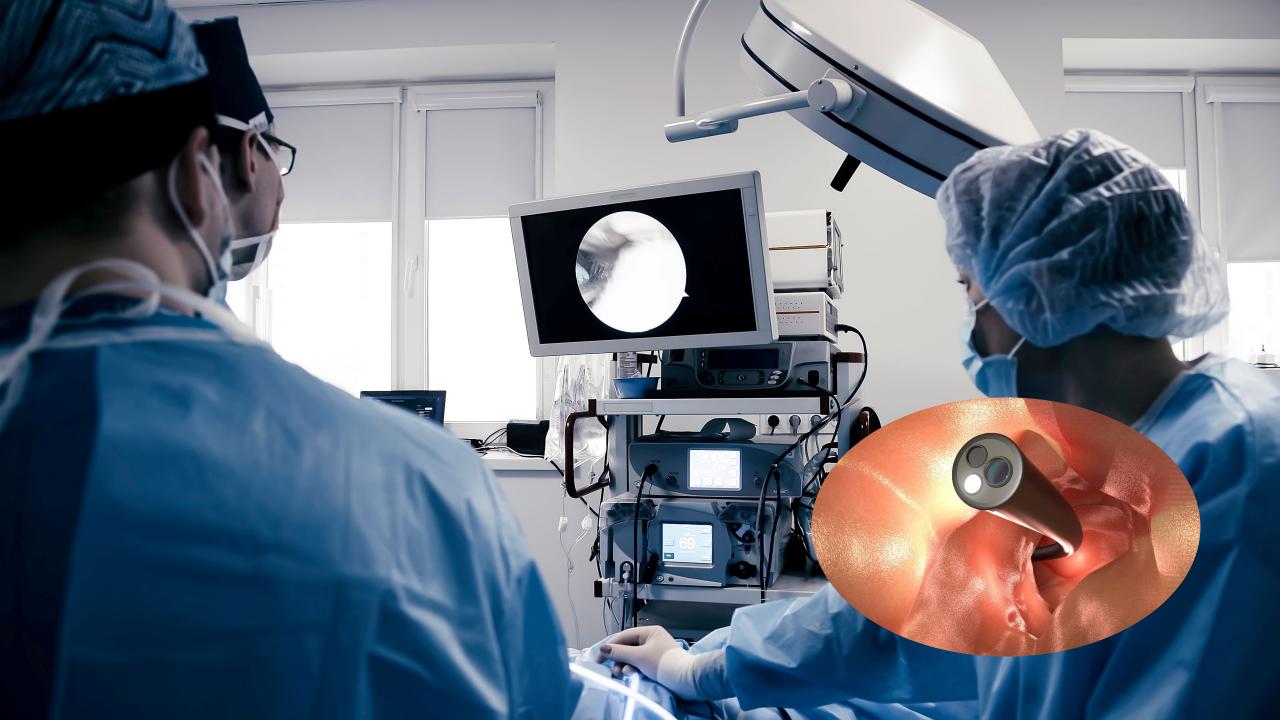
10/2020 – 12/2023 Prüfmittelmanagement - PRIMAS

10/2018 – 09/2020 Marketing GMP

01/2024 - today
Quality Assurance Consulting

Prüfprozessmanagement und Qualitätssicherung

Automotive

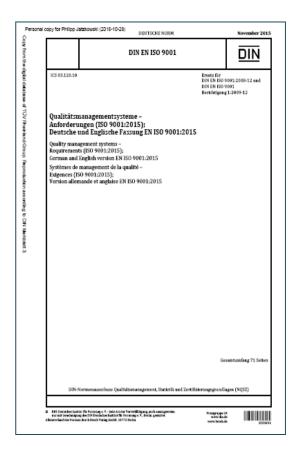

Aerospace

Medical / Pharma

Defence

Normen, Richtlinien und interessierte Parteien

Normen / Richtlinien


Interessierte Parteien

	Allgemein	Medizintechnik
Qualitätsmanagementsysteme – Anforderungen	ISO 9001:2015	ISO13485:2016 CFR Part 820.70
Prozessfähigkeit	ISO/DIS 22514-16	ISO13485:2016 7.3.7 & 7.5.6
Messunsicherheit	GUM (JCGM100:2008)	
Eignungsnachweis	ISO/DIS 22514-7:2021	GMP, Chapter 5 und 6
Entscheidungsregeln	ISO 14253-1:2017	

Forderungen der ISO 9001:2015

8.5 Produktion und Dienstleistungserbringung

8.5.1 Steuerung der Produktion und der Dienstleistungserbringung

Die Organisation muss die Produktion und die Dienstleistungserbringung unter <u>beherrschten</u> Bedingungen durchführen.

Falls zutreffend, müssen beherrschte Bedingungen Folgendes enthalten:

[...]

c) die Durchführung von Überwachungs- und Messtätigkeiten in geeigneten Phasen, um zu verifizieren, dass die Kriterien zur Steuerung von Prozessen oder Ergebnissen sowie die Annahmekriterien für Produkte und Dienstleistungen erfüllt wurden

[....]

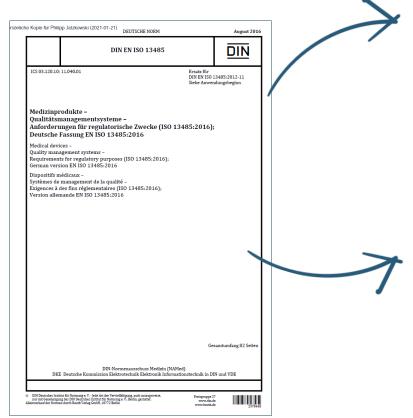
DIN EN ISO 9001: Qualitätsmanagementsysteme – Anforderungen, 2015-11

PRÜFSTRATEGIEN UND DIE STATISTIK DAHINTER

Forderungen der ISO13485, GMP

GMP – Good Manufacturing Practise

Chapter 5: Produktion Chapter 6: Qualitätssicherung



- 4.2 Medizinprodukteakte
- 5.5 Verantwortung, Befugnis und Kommunikation
- 5.6 Managementbewertung inkl. Aktualisierung von Rechtsvorschriften
- 6.4 Arbeitsumgebung und Lenkung der Kontamination
- 7.1 Planung der Produktrealisierung (Risikomanagement)
- 7.2.3 Kommunikation mit den Kunden inklusive Regulierungsbehörden
- 7.3.7 Entwicklungsvalidierung
- 7.5 Produktion und Dienstleistungserbringung (Sauberkeit, Instandhaltung, sterile Medizinprodukte, Rückverfolgbarkeit)
- 8 Messung, Analyse und Verbesserung (Rückmeldeprozess zum Aufdecken von Nicht-Konformitäten, Berichterstattung an Regulierungsbehörden, Überwachung und Messungen von Prozessen und Produkten, Lenkung Nicht-konformer Produkte)
- 5 Produktion (Kontamination, Rückverfolgbarkeit, Risikomanagement)
- 6 Qualitätssicherung (Abteilung für Qualitätssicherung, Stichprobenprüfung, Test-Validierung)

Forderungen der ISO 13485:2016

7.3.7 Entwicklungsvalidierung

Eine Entwicklungsvalidierung muss nach geplanten und dokumentierten Regelungen durchgeführt werden, um sicherzustellen, dass das resultierende Produkt in der Lage ist, die Anforderungen für die festgelegte Anwendung oder den bestimmungsgemäßen Gebrauch zu erfüllen.

Die Organisation muss Validierungspläne dokumentieren, die Methoden, Annahmekriterien und, soweit angemessen, statistische Methoden mit Begründung für den Stichprobenumfang enthalten.

Eine Entwicklungsvalidierung muss an einem repräsentativen Produkt vorgenommen werden. Ein repräsentatives Produkt schließt die erste Produktionseinheit, die erste Charge oder Gleichwertiges ein. Die Begründung für die Auswahl des für die Validierung verwendeten Produkts muss aufgezeichnet werden (siehe 4.2.5).

Validierung der Prozesse zur Produktion und zur Dienstleistungserbringung

Die Organisation muss sämtliche Prozesse der Produktion und Dienstleistungserbringung validieren, deren Ergebnis nicht durch nachfolgende Überwachung oder Messung verifiziert werden kann oder verifiziert wird, wodurch sich Unzulänglichkeiten erst zeigen, nachdem das Produkt in Gebrauch genommen oder die Dienstleistung erbracht worden ist.

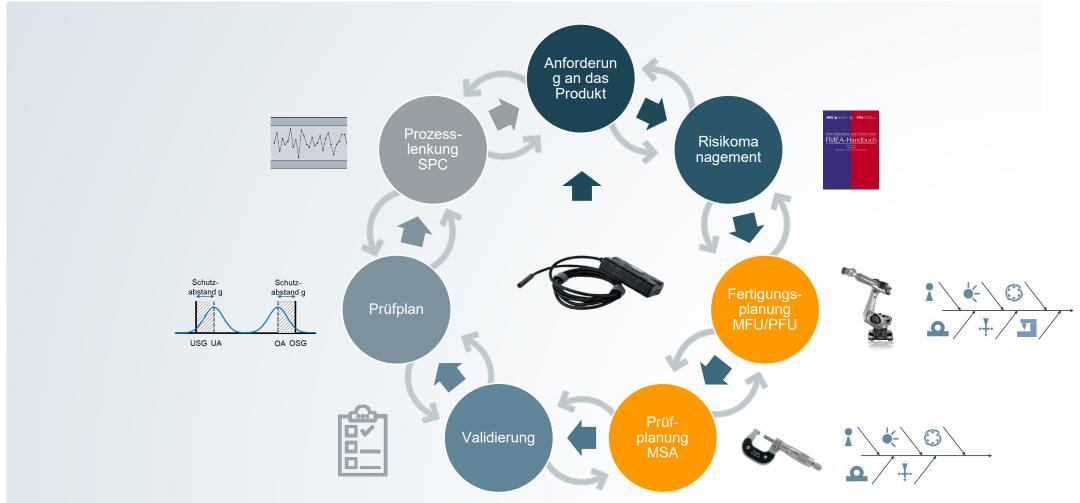
Die Validierung muss die Fähigkeit dieser Prozesse zur beständigen Erreichung der geplanten Ergebnisse darlegen.

Die Organisation muss Verfahren für die Validierung von Prozessen dokumentieren, einschließlich:

- festgelegte Kriterien für die Bewertung und Genehmigung der Prozesse;
- Qualifizierung der Ausrüstung und Qualifikation des Personals;

Revalidierung, einschließlich Kriterien für die Revalidierung;

- Gebrauch spezifischer Methoden, Verfahren und Annahmekriterien;
- soweit angemessen, statistische Methoden mit Begründung für Stichprobenumfänge;


Anforderungen zu Aufzeichnungen (siehe 4.2.5);

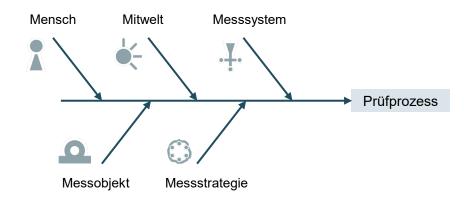
03.06.2025

PRÜFSTRATEGIEN UND DIE STATISTIK DAHINTER

ISO 13485, 7.1 – Planung der Produktrealisierung

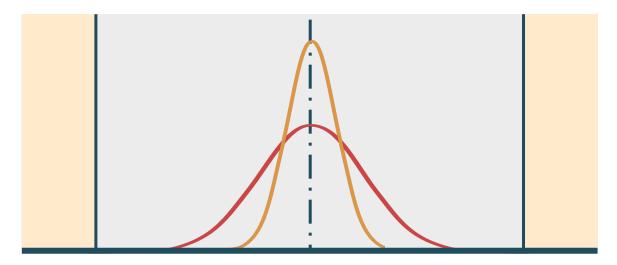
PRÜFSTRATEGIEN UND DIE STATISTIK DAHINTER

Voraussetzung: Geeigneter Prüfprozess


Prüf<u>objekt</u>

Prüf<u>merkmal</u>
Spezifikation
Nennwert & Toleranz

Prüf<u>prozess</u> Prüf<u>mittel</u>



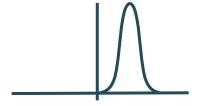
03.06.2025 www.testotis.de

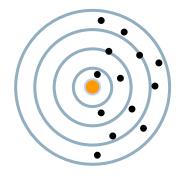

Ausgangspunkt der statistischen Prozesslenkung

Untere Spezifikationsgrenze Obere Spezifikationsgrenze

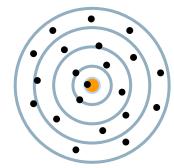
- Beobachtete Prozessstreuung
- Messunsicherheit

Prozessfähigkeit – Zufällige und systematische Abweichung

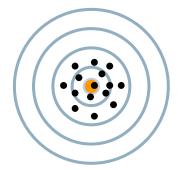

Dominante systematische Abweichung

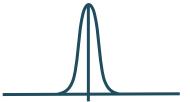

Große systematische und zufällige Abweichung

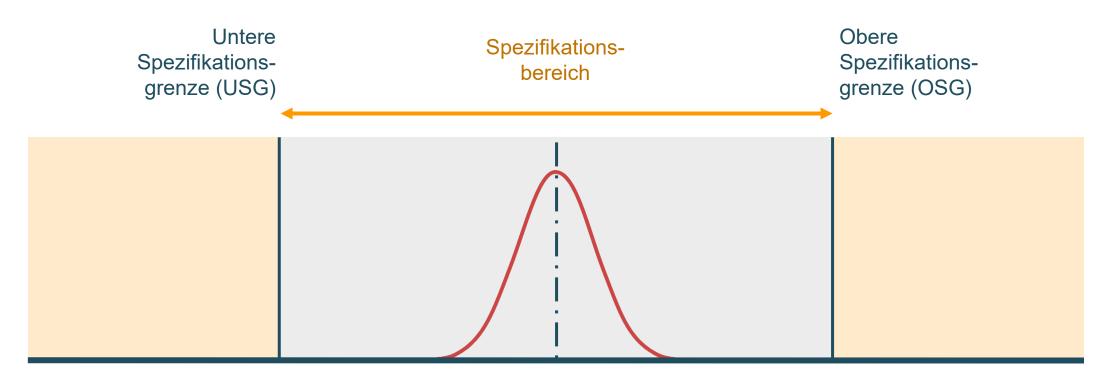
Dominante zufällige Abweichung


Geringe systematische und zufällige Abweichung

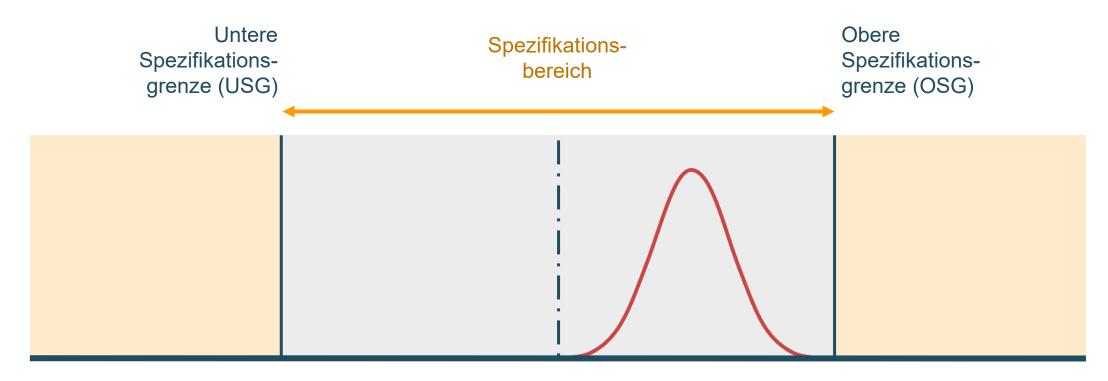






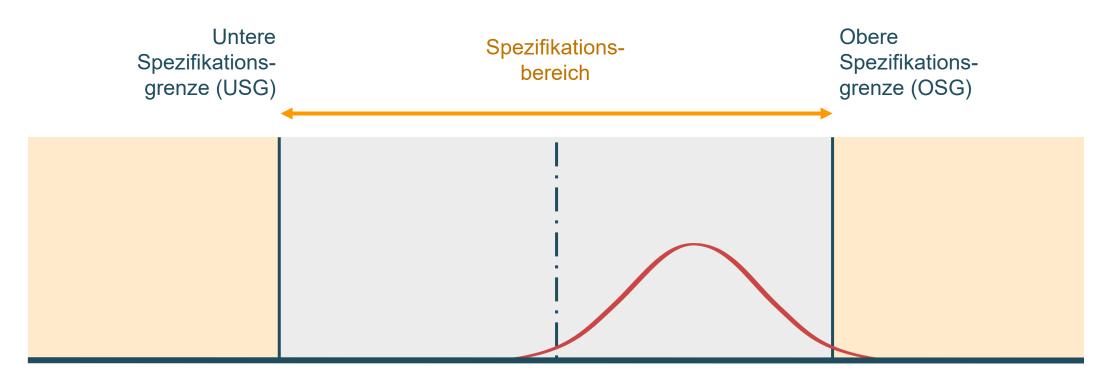


Voraussetzung: Maschinen- und Prozessfähigkeit



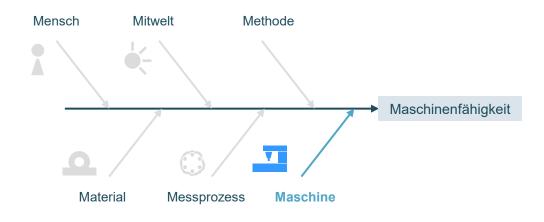
Beobachtete Prozessstreuung

Voraussetzung: Maschinen- und Prozessfähigkeit



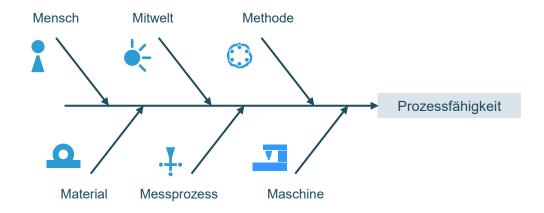
Beobachtete Prozessstreuung

Voraussetzung: Maschinen- und Prozessfähigkeit



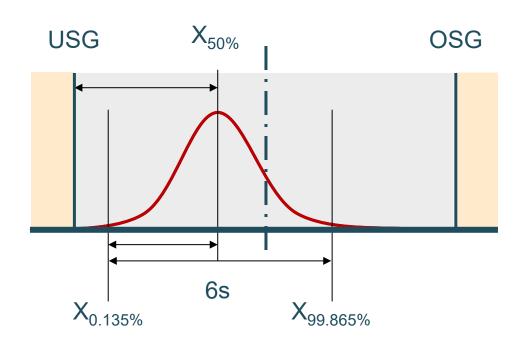
Beobachtete Prozessstreuung

PRÜFSTRATEGIEN UND DIE STATISTIK DAHINTER


Maschinenfähigkeitsuntersuchung MFU & Prozessfähigkeitsuntersuchung PFU

Maschinenfähigkeitsuntersuchung MFU

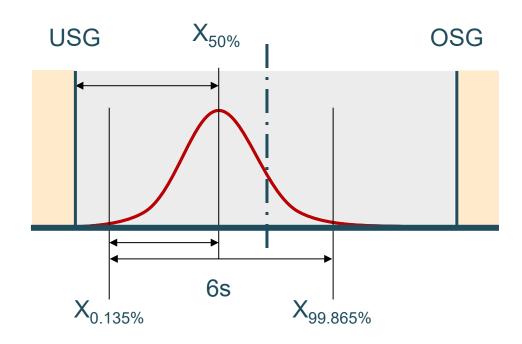
Prozessfähigkeitsuntersuchung PFU

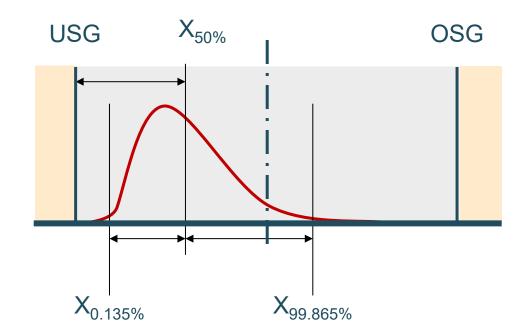


∑125x

16

Maschinen- und Prozessfähigkeitsindizes




$$c_p = \frac{\text{OSG} - \text{USG}}{6s}$$

$$c_{pk} = min\left(\frac{OSG - \bar{x}}{3s}; \frac{\bar{x} - USG}{3s}\right)$$

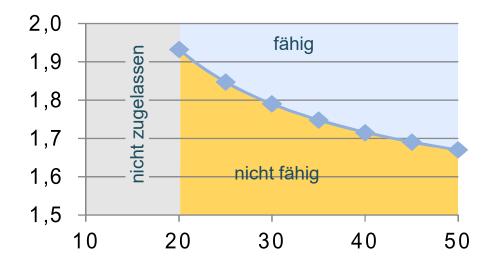
Berücksichtigung realer Verteilungsformen

$$c_{pk} = min\left(\frac{OSG - \bar{x}}{3s}; \frac{\bar{x} - USG}{3s}\right)$$

$$c_{pk} = min\left(\frac{\text{OSG} - X_{50\%}}{X_{99.865\%} - X_{50\%}}; \frac{X_{50\%} - \text{USG}}{X_{50\%} - X_{0.135\%}}\right)$$

Prozessfähigkeit – Wie sind die Fähigkeitskennwerte zu verstehen?

Fähigkeitsindex	Prozessstreuung 6 s zur Toleranz	Fehlerrate	PPM (Parts per Million)
2	50 %	0,000001%	0
1,67	60 %	0,000054%	0,544
1,33	75 %	0,004%	35
1	100 %	0,1%	1.350
0,8	125 %	0,8%	8.000
0,5	200 %	6,7%	67.000

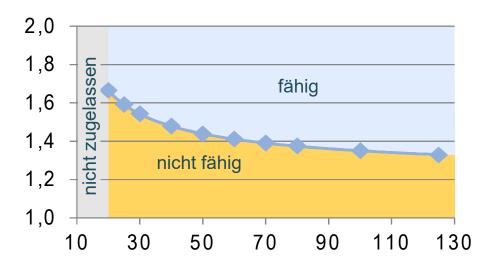

Maschinenfähigkeitsuntersuchung – Abhängigkeit des Grenzwerts von der Stichprobengröße

Streuung	$C_m = \frac{OSG - USG}{6 s}$	≥ 1,67
Lage	$C_{mk} = min\left(\frac{OSG - \bar{x}}{3s}; \frac{\bar{x} - USG}{3s}\right)$	≥ 1,67

$$C_{mk} \ge 1,67 \cdot \frac{\left(1 + \frac{1}{2n}\right)\sqrt{\frac{n-1}{\chi_{n-1,\alpha}^2}}}{\left(1 + \frac{1}{2n}\right)\sqrt{\frac{n_{soll} - 1}{\chi_{n_{soll} - 1,\alpha}^2}}}$$

$$n_{soll} = 50$$

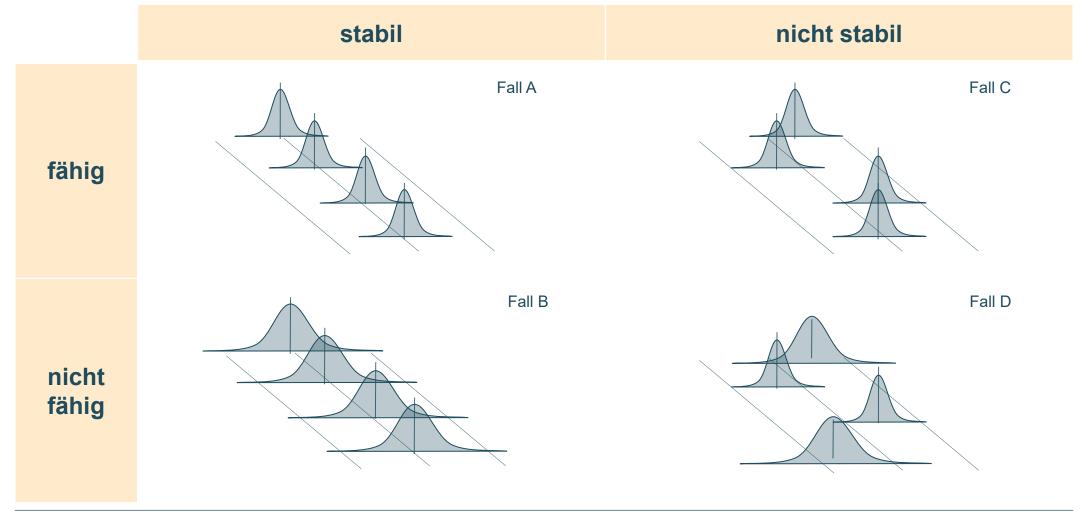
n	C _{mk}
20	1,93
25	1,85
30	1,79
35	1,75
40	1,72
45	1,69
50	1,67



Prozessfähigkeitsuntersuchung – Abhängigkeit des Grenzwerts von der Stichprobengröße

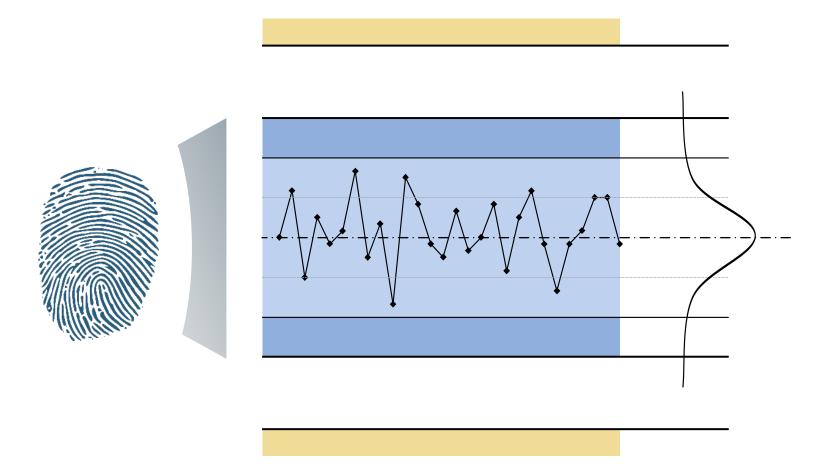
Streuung	$C_p = \frac{\text{OSG} - \text{USG}}{6 s}$	≥ 1,33
Lage	$C_{pk} = min\left(\frac{OSG - \bar{x}}{3s}; \frac{\bar{x} - USG}{3s}\right)$	≥ 1,33

$$C_{pk} \ge 1,33 \cdot \frac{\left(1 + \frac{1}{2n}\right)\sqrt{\frac{n-1}{\chi_{n-1,\alpha}^2}}}{\left(1 + \frac{1}{2n_{soll}}\right)\sqrt{\frac{n_{soll} - 1}{\chi_{n_{soll} - 1,\alpha}^2}}}$$


n	срк
20	1,67
25	1,59
30	1,54
40	1,48
50	1,44
60	1,41
70	1,39
80	1,37
100	1,35
125	1,33

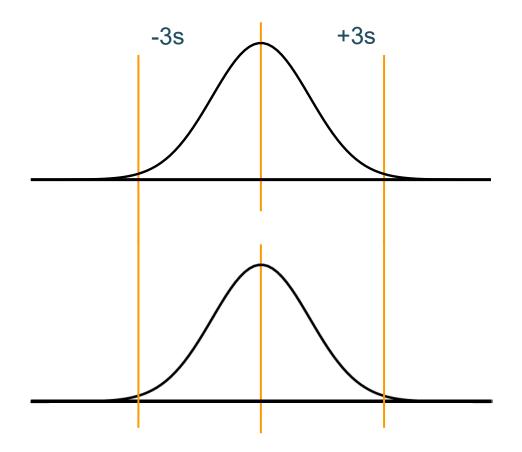
 $n_{soll} = 125$

Prozessfähigkeit & Stabilität

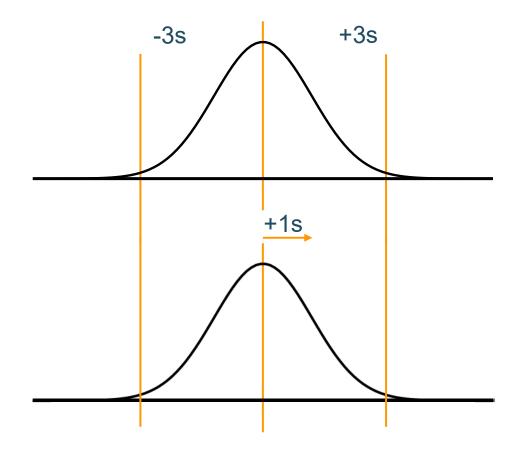


03.06.2025 www.testotis.de

Statistische Prozesslenkung mit Regelkarten



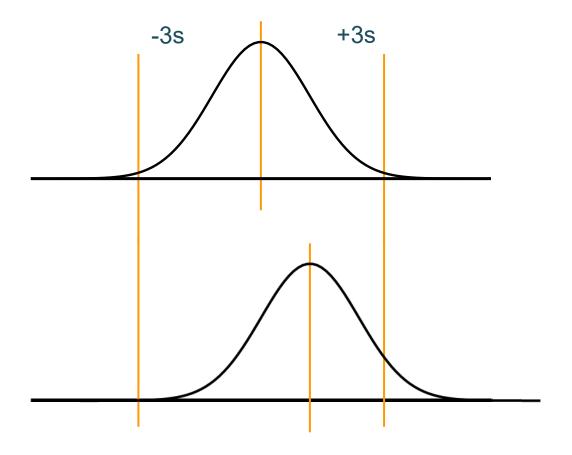
Walter Andrew Shewhart, 18.03.1891 – 11.03.1967


Erkennen von Prozessveränderungen

Keine Prozessveränderung

Wahrscheinlichkeit eines Alarms: 1% bei einem Grenzwert von 3 Sigma

Erkennen von Prozessveränderungen

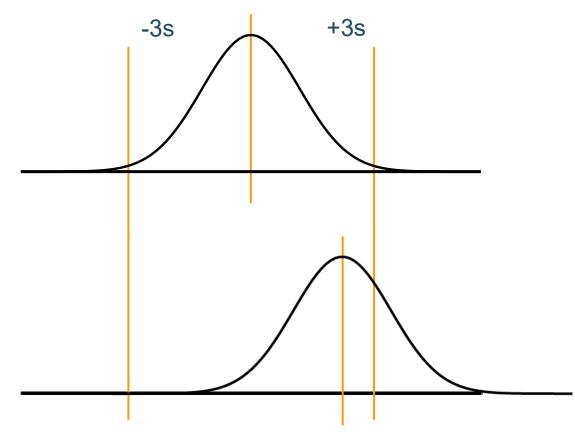

Keine Prozessveränderung

Wahrscheinlichkeit eines Alarms: 1% bei einem Grenzwert von 3 Sigma

1 Sigma Shift

Wahrscheinlichkeit eines Alarms: 2,28 % bei einem Grenzwert von 3 Sigma

Erkennen von Prozessveränderungen


Keine Prozessveränderung

Wahrscheinlichkeit eines Alarms: 1% bei einem Grenzwert von 3 Sigma

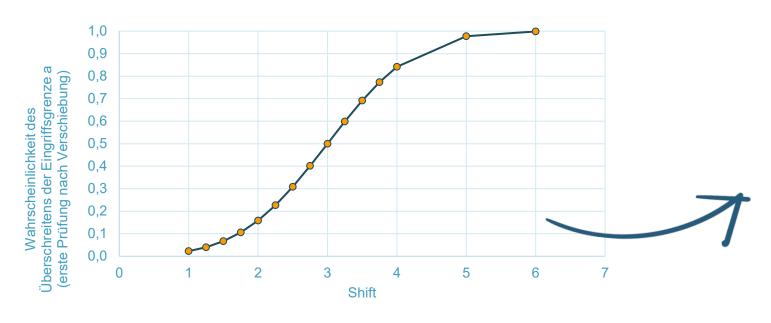
2 Sigma Shift

Wahrscheinlichkeit eines Alarms: 15,9 % bei einem Grenzwert von 3 Sigma

Erkennen von Prozessveränderungen

Keine Prozessveränderung

Wahrscheinlichkeit eines Alarms: 1% bei einem Grenzwert von 3 Sigma


3 Sigma Shift

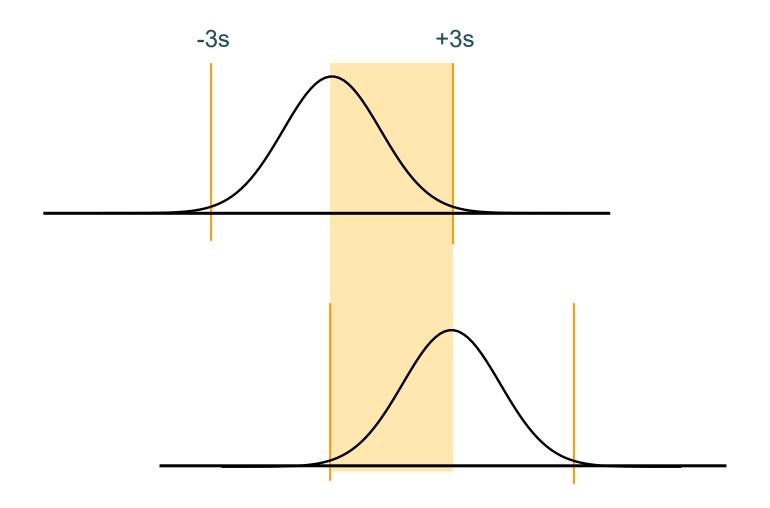
Wahrscheinlichkeit eines Alarms: 50 % bei einem Grenzwert von 3 Sigma

Berechnung der mittleren Lauflänge

Wahrscheinlichkeit des Überschreitens der Eingriffsgrenze a (erste Prüfung nach Verschiebung)

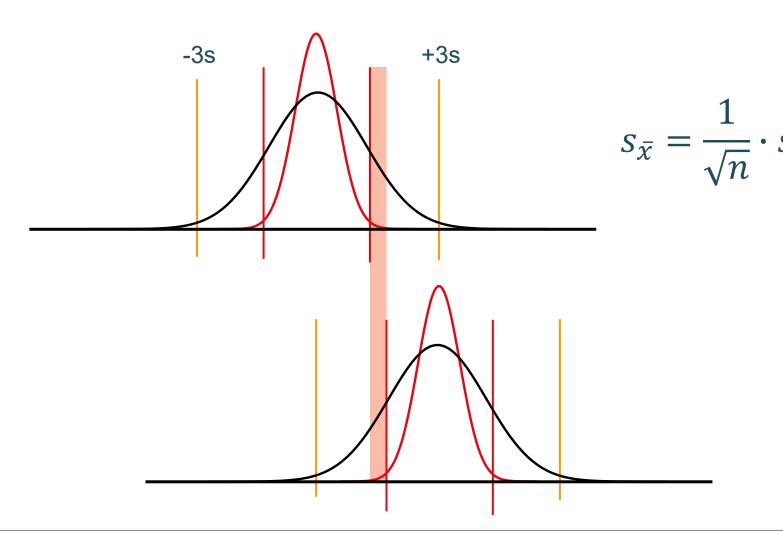
ARL	=	<u> </u>
		a

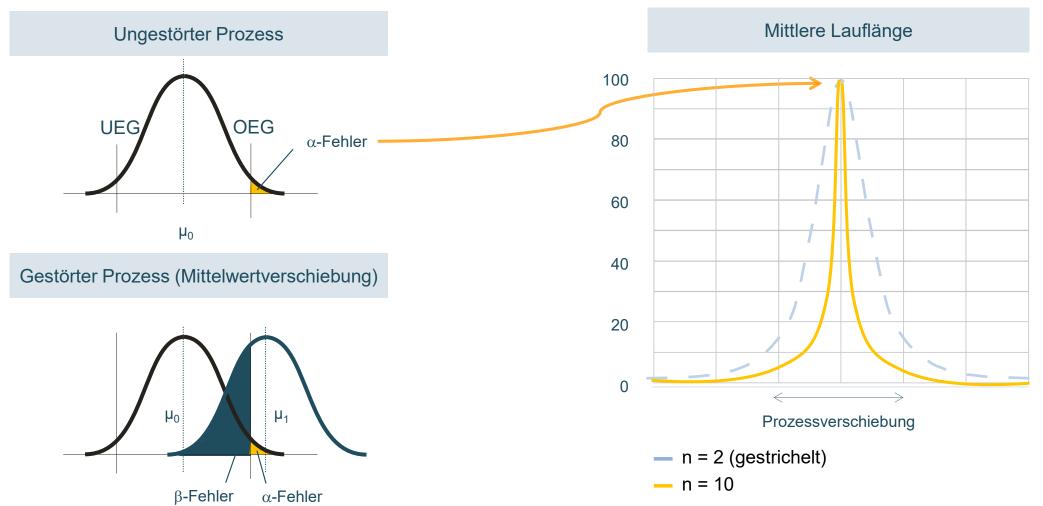
Beispiel: 1 Sigma Shirt

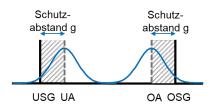

$$ARL = \frac{1}{0,0227}$$

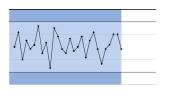
$$ARL \approx 44$$

Shift	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3	3,25	3,5	3,75	4	5	6
а	0,023	0,040	0,067	0,106	0,159	0,227	0,309	0,401	0,500	0,599	0,691	0,773	0,841	0,977	0,999

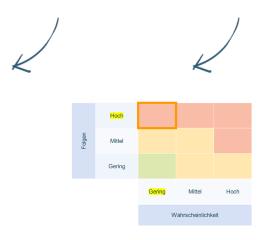

Erkennen von Prozessveränderungen

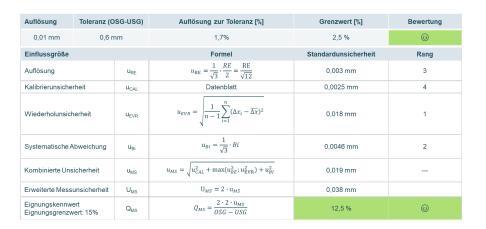

Erkennen von Prozessveränderungen


Empfindlichkeit von Regelkarten



Ergebnis Produktionslenkungsplan / Prüfplan





Arbeits- schritt	•••	Prüf- merkmal	Prüf- mittel	Prüf- anweisung	Risiko- bewer-tung	Eignungs- nachweis	USG	UA	OA	osg	Stich- probe	UEG	OEG	Reaktions- plan
3.75		Durch- messer	KA1234	PR1234	<u>hoch</u>	EN1234	4,7 mm	4,783 mm	5,218 mm	5,3 mm	100%	4,95 mm	5,12 mm	<u>RE1234</u>

Be sure. testo Prüfumfang - Regelkreise 100% SPC! cp, cpk **WAP** <100% Messraum **WEP** Kunde

AQL – Kennbuchstaben für den Stichprobenumfang

Losumfang				Spezielle P	rüfniveaus		Allgemeine Prüfniveaus						
	Losum	rang	S-1	S-2	S-3	S-4	1	II	III				
2	bis	8	A A A		А	А	А	В					
9	bis	15	Α	A	А	А	А	В	С				
16	bis	25	А	A	В	В	В	С	D				
26	bis	50	А	В	В	С	С	D	E				
51	bis	90	В	В	С	С	С	E	F				
91	bis	150	В	В	С	D	D	F	G				
151	bis	280	В	С	D	E	E	G	н				
281	bis	500	В	С	D	E	F	н	J				
501	bis	1 200	С	С	E	F	G	J	к				
1 201	bis	3 200	С	D	E	G	Н	к	L				
3 201	bis	10 000	С	D	F	G	J	L	M				
10 001	bis	35 000	С	D	F	Н	К	М	N				
35 001	bis	150 000	D	E	G	J	L	N	Р				
150 001	bis	500 000	D	E	G	J	М	Р	Q				
500 001	und m	nehr	D	E	Н	К	N	Q	R				

AQL –Stichprobenanweisungen für normale Prüfung

Kenn- buch-	a		An	nehml	oare Q	ualität	sgrenz	zlage,	AQL, i	n Ante	il fehle	erhafte	r Einh	eiten i	n Proz	ent un	ıd Anz	ahl Fe	hler je	100 E	inheit	en (no	rmale	Prüfur	ng)		
stabe für den Stich-	Stich- proben- umfang	0,010	0,015	0,025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10	15	25	40	65	100	150	250	400	650	1 000
proben- umfang	amang	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re
А	2	П	П			П		П				П			¢	0 1	П	¢	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	30 31
В	3				$\ \cdot \ $									介	0 1	仑	介	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	30 31	44 45
С	5		<u> </u>										介	0 1	仑	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	30 31	44 45	Lîd
D	8											介	0 1	仑	\Diamond	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	30 31	44 45	1	
E	13										Ϋ́	0 1	쇼	쇼	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	30 31	44 45	Î		
F	20		<u> </u>	<u> </u>						介	0 1	仑	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	1		Lît.			
G	32								介	0 1	仑	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	1						
н	50							1	0 1	仑	❖	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	1							
J	80		_ _	<u> </u>	<u> </u>	_ _	7	0 1	슌	❖	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	1.	_	Ш.		$\ \ _{-}$				
к	125					₩	0 1	仑	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	Î									
L	200				₩	0 1	쇼	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 1 5	21 22	1										
м	315	Щ.		₩	0 1	쇼	❖	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	<u>-îl</u>	_ _	_	<u> </u>	_ _			_ _			<u> </u>	
N	500		₩	0 1	☆	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	Î												
Р	800	介	0 1	쇼	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	Î													
Q	1 250	0 1	11	卆	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	宜.		_ _	_	_		.				-			_ _	
R	2 000	仑		1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	仑		U	Ш	Ш											U

03.06.2025 www.testotis.de

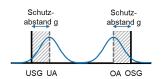
VDI Fachtagung "Prüfprozesse"

VDI Wissensforum "Prüfprozesse in der industriellen Praxis"

05.-06. November 2025 in Erfurt

Schulung und Beratung

Schulungen



Pilotprojekte

Coaching 先生

Prüfmittelmanagement Der Prüfmittelbeauftragte (TÜV) Sicher durch das Audit Das Kalibrierzertifikat

Automotive Weitere **Core Tools** APQP -FMEA, MSA, Six Sigma **SPC und PPAP** Statistische Prozess-ISO/IEC 17025 lenkung (SPC) Messsystemanal yse/Eignungsna ISO 10012 chweise (MSA/VDA 5)

Vielen Dank für Ihre Aufmerksamkeit!

LinkedIn Anika Zart

Anika Zart
Consultant Quality Assurance

Tel.: +49 151 52718796 E-Mail: AZart@testotis.de

LinkedInTesto Industrial Services