

QUALIFIZIERUNG EINES ABSENKBETRIEBS

Energieverbrauch in Reinräumen

"Auch wenn ihre Funktion und Größe erheblich variiert, kann der Energieverbrauch von Reinräumen 10-mal höher sein als der Energieverbrauch von Büroräumen mit vergleichbarer Größe. Eine erhebliche Menge an Energie ist erforderlich, um große Mengen gefilterter und konditionierter Luft zuzuführen, die benötigt wird, um einen bestimmten Reinheitsgrad der Luft zu erzielen. [...] Die Produktion dieser Art von Luft in hoher Qualität kann bis zu 80 % der in einer typischen Produktionseinrichtung verbrauchten Gesamtenergie ausmachen."

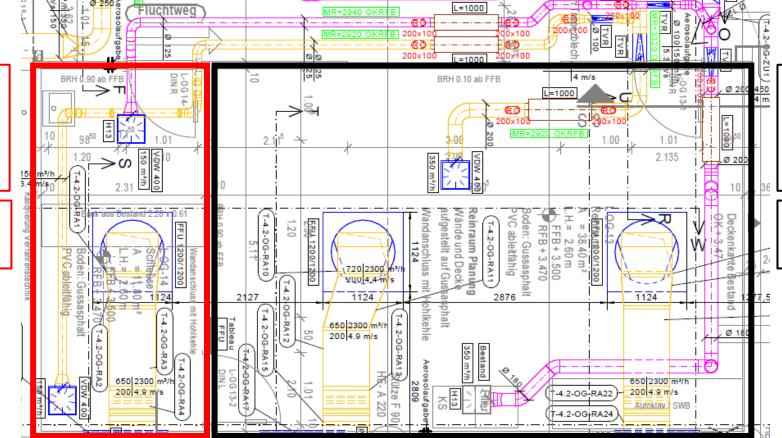
DIN EN ISO 14644-16:2020 Energieeffizienz von Reinräumen und Reinluftgeräten

QUALIFIZIERUNG EINES ABSENKBETRIEBS

Energieverbrauch in Reinräumen Reinraum Testo Industrial Services

Energieverbrauch in Reinräumen Reinraum Testo Industrial Services

T-4.2-OG-RA7



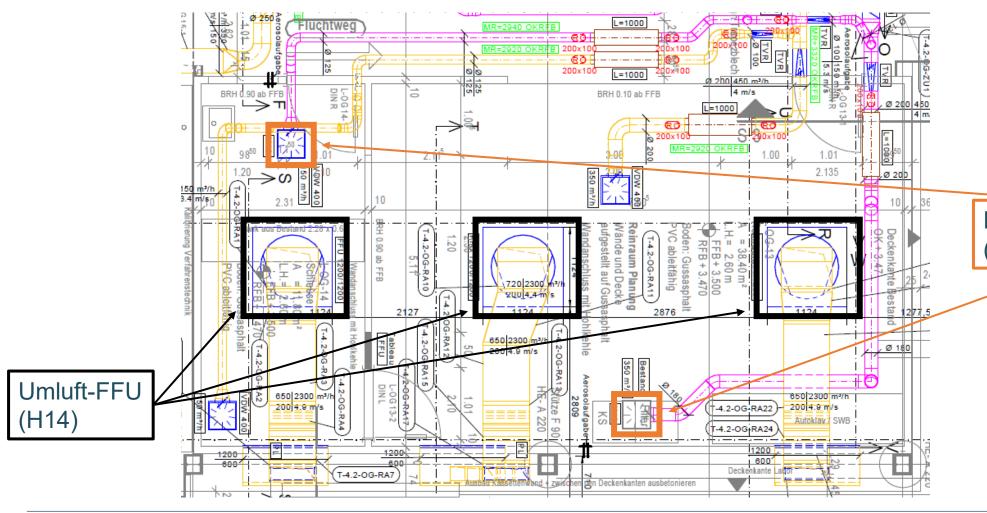
Schleuse

A: 11,80 m² V: 30,68 m³

Solldruck:

+15 Pa

Reinraum


A: 38,40 m² V: 99,84 m³

Solldruck:

+30 Pa

Energieverbrauch in Reinräumen Reinraum Testo Industrial Services

Frischluftzufuhr (H13)

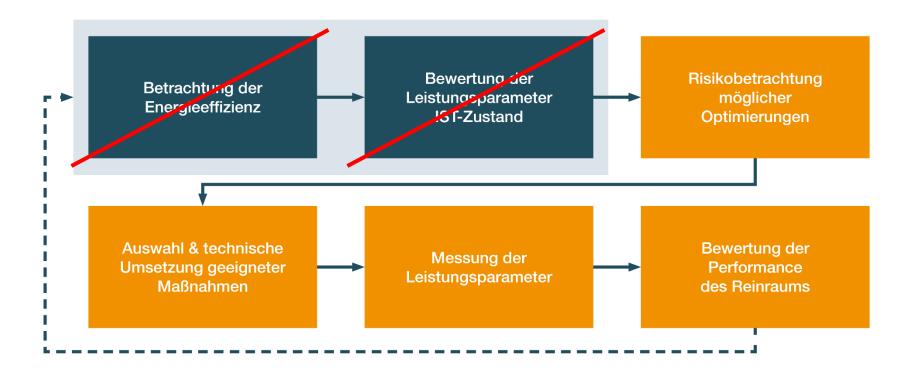
QUALIFIZIERUNG EINES ABSENKBETRIEBS

Energieverbrauch in Reinräumen Reinraum Testo Industrial Services

Luftmengen bei einer Luftwechselrate von 20 h⁻¹ im Reinraum

Frischluftanteil [m³/h]	Umluftanteil [m³/h]
390	2100

Für die Betrachtung der geleisteten Einsparung ist hier nur der Umluftanteil, als einzig variierbarer Parameter, interessant.


Energiekosten der Umluft-FFUs pro Jahr:

Stromverbrauch beider Geräte [kwh]	Angenommener Strompreis [ct/kwh]*	Kosten pro Jahr [€]
3155	16,99	536

^{*} Durchschnittlicher Industriestrompreis 2024 lt. Bundesnetzagentur

Projektablauf – Einführung eines Absenkbetriebs

Vorschlag für eine Optimierung: Einführung eines Absenkbetriebs

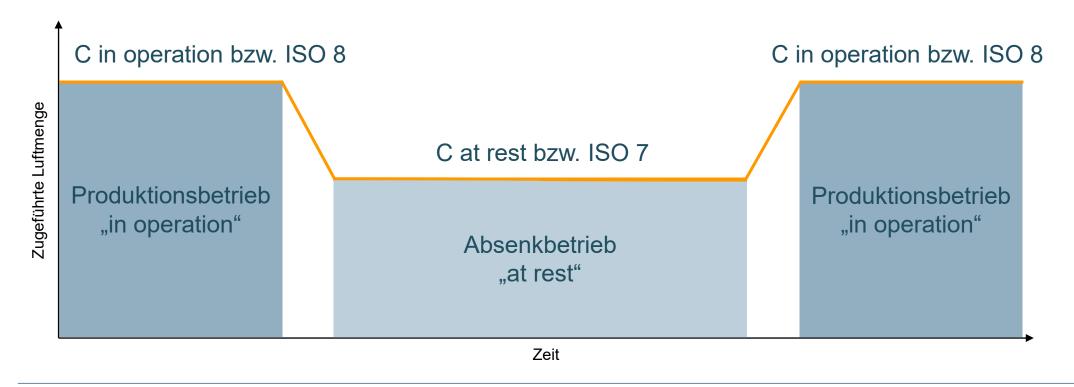
Projektablauf – Compliance

Herausforderung

Anpassung der Luftwechselrate (temporär oder permanent) ist ein Eingriff in das validierte System mit möglichen Veränderungen

Ziel für den Prozessverlauf

Festlegung von Vorkehrungen für den Nachweis der Einhaltung des validierten/qualifizierten Zustand des Systems


- Nachvollziehbarkeit
- Rückverfolgbarkeit
- Compliance zu gesetzlichen und internen Vorgaben

Change Control – Damit ist der Prozess Teil des **QMS** und wird über **Risikoanalysen** und **CAPA** gesteuert und **GMP-gerecht dokumentiert**.

Absenkbetrieb – Was ist das

- ▶ temporäre Reduzierung der zugeführten Luftmengen auf einen bestimmten Wert
- ► Luftwechselraten immer > 0 h⁻¹ (!)

Absenkbetrieb – Einsparpotential

▶ Wie viele Stunden könnte die Anlage in einem abgesenkten Betrieb laufen? Wie viel Einsparpotential gibt es also?

Betriebsart	1-Schichtsystem	2-Schichtsystem	Absenkung am	2-Wochen
	(8 – 17 Uhr)	(6 – 22 Uhr)	Wochenende	Betriebsferien
Betriebsfreie Stunden pro Jahr	5475 h	2848 h	2912 h*	336 h**

^{*} Produktionsfreie Zeit von Freitags 22 Uhr bis Montags 6 Uhr

► In einem 24/7 Betrieb nicht anwendbar. Hier kann ggf. eine permanente Reduzierung der Luftwechselrate Potential zeigen

^{**} Produktionsfreie Zeit über 14 komplette Tage

Absenkbetrieb – Parameter

Risikoanalyse als Basis für eine sichere Umsetzung

- I. In welchem Raum/Reinraumbereich kommen Optimierungen in Frage?
- **II.** Einordnung prozessrelevanter Parameter

Parameter	GMP/Produktkritisch Ja/Nein	Spezifikation
part. Reinheitsklasse	Ja	Klasse C
Temperatur	Nein	21 °C ± 2 K
Druckkaskade	Ja	15 ± 5 Pa

^{*}Spezifikation laut Annex 1 EU GMP-Leitfaden (2022)

- III. Festlegung der kritischen Größen
 - Welche Leistungsdaten müssen nach einer Maßnahme erhoben werden?
 - Welche Grenzwerte werden für diese Größen festgelegt?

Absenkbetrieb – Parameter

Was ist vom Absenkbetrieb betroffen?

- Die Luftwechselrate ist geringer das hat u.A. Einfluss auf:
 - Erholzeit/Clean-Up Phase
 - o partikuläre Reinheitsklasse
 - mikrobiologische Luftreinheit
 - Temperatur und relative Feuchte

Was nicht betroffen sein darf

Druckkaskade zwischen den Räumen

Absenkbetrieb – Qualifizierung planen

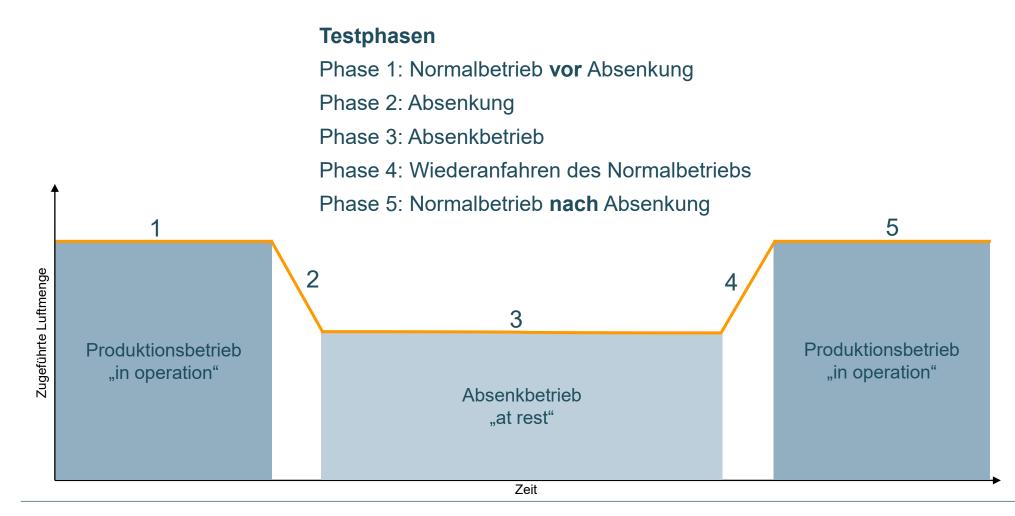
Schritt 1: Welche Luftwechselrate im Absenkbetrieb?

- Messungen bei unterschiedlichen Luftwechselraten im at rest Betriebszustand
- Festlegung einer geeigneten Luftwechselrate

Schritt 2: Testphasen festlegen

Aufteilen der Absenkung in einzelne Phase zur engmaschigen Betrachtung

Schritt 3: Länge der Absenkphase und Wiederanfahr-Phase festlegen


 Je nach Regelung der Anlage funktionierendes Zeit- und Regelverfahren für die Absenkung und das Wiederanfahren der Anlagen festhalten

Schritt 4: Messtechnische Prüfungen

Durchführung der in Risikobetrachtungen geforderter Messungen

Absenkbetrieb – Testphasen

Phase 1: Normalbetrieb vor Absenkung

- Messungen aller relevanten Parameter
 - Ergebnisse können durch Requalifizierungen und Monitorings unterstützt sein
- Stabilität der Messergebnisse aus Trendanalysen (Überwachungsplan nach 14644-2 und CCS)
 - Zeigt die Robustheit der zugrunde liegenden Messdaten
- Zeitintervall zwischen Beenden des Produktionsbetriebs und Start der Absenkung
 - Bestimmung über Clean-Up Phase (oder Erholzeit)

Phase 2: Absenkung

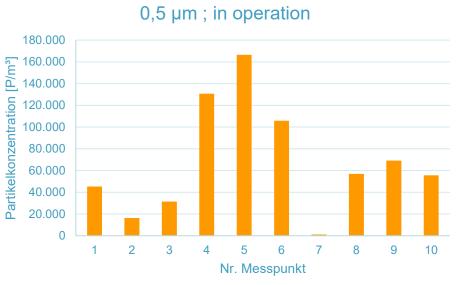
- Kontinuierliche Überprüfung von partikulärer und mikrobiologischer Reinheitsklasse während des Absenkprozesses
- Prüfung der Raumdifferenzdrücke während der Absenkung
 - o Druckkaskade muss dauerhaft aufrecht erhalten bleiben
- Reproduzierbarkeit prüfen
 - Oben genannte Messungen mehrmals durchführen

Phase 3: Absenkbetrieb ("at rest")

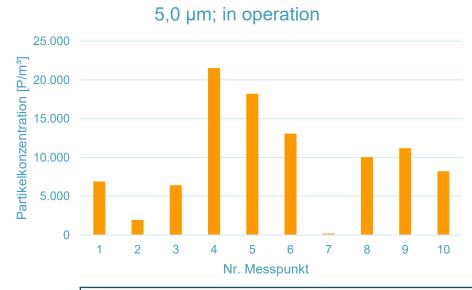
- Prüfung gegenüber at rest Grenzen im reduzierten Lüftungsbetrieb
- Prüfung der Raumdifferenzdrücke
 - O Druckkaskade muss dauerhaft aufrecht erhalten bleiben
- Reproduzierbarkeit prüfen
 - Werden die at rest Grenzen reproduzierbar im Absenkbetrieb eingehalten?

Phase 4: Wiederanfahren

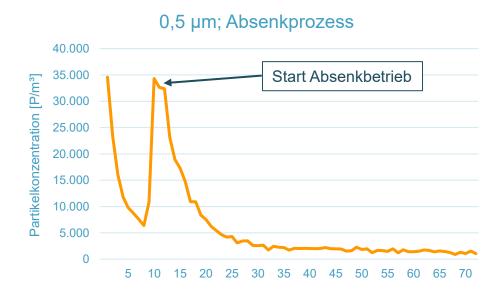
- Kontinuierliche Überprüfung von partikulärer und mikrobiologischer Reinheitsklasse während des Wiederanfahrens
- Prüfung der Raumdifferenzdrücke während des Erreichens des Normalbetriebs
 - Druckkaskade muss dauerhaft aufrecht erhalten bleiben.
- Reproduzierbarkeit prüfen
 - Oben genannte Messungen mehrmals durchführen
- Zeitpunkt zum Start des Wiederanfahrens festlegen
 - Wie lange vor dem Start der Produktion müssen die Luftmengen wieder auf den Normalbetrieb gesteigert werden.



Phase 5: Normalbetrieb nach Absenkung

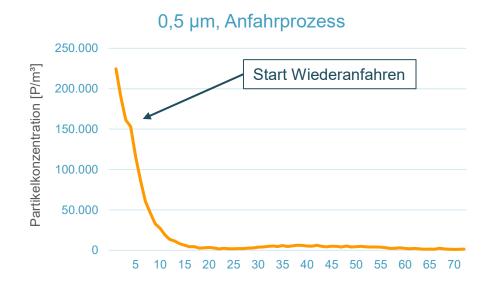

- Messungen aller relevanten Parameter
 - werden alle Grenzwerte wieder eingehalten
- Ab wann kann der Normalbetrieb wieder aufgenommen werden (Phase 4 und Phase 5)

Absenkbetrieb – Messergebnisse partikuläre Reinheitsklasse


Maximal [P/m³]	166.499
Minimal [P/m³]	1.072
in operation Grenzwert Klasse C (ISO 8)	3.520.000

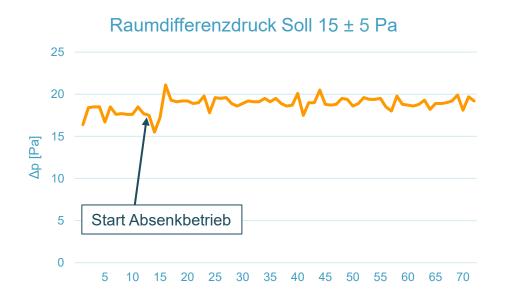
Maximal [P/m³]	21.525
Minimal [P/m³]	178
in operation Grenzwert Klasse C (ISO 8)	29.300

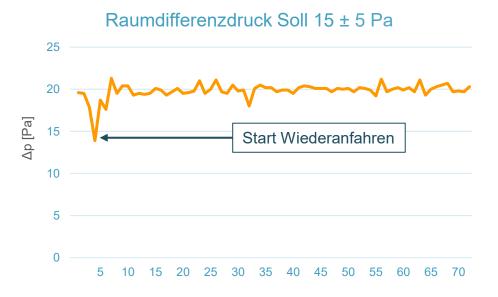
Absenkbetrieb – Messergebnisse Partikelkonzentration


Maximal [P/m³]	34.570
at rest Grenzwert Klasse C (ISO7)	352.000

Maximal [P/m³]	4.248
at rest Grenzwert Klasse C (ISO 7)	2.930

Absenkbetrieb – Messergebnisse Partikelkonzentration


Maximal [P/m³]	225.582
at rest Grenzwert Klasse C (ISO7)	352.000



Maximal [P/m³]	3.326
at rest Grenzwert Klasse C (ISO 7)	2.930

Absenkbetrieb – Messergebnisse Raumdifferenzdruck

Absenkbetrieb – Ersparnis

Reduzierung auf eine Luftwechselrate von etwa 10 h⁻¹

Frischluftanteil [m³/h]	Umluftanteil [m³/h]
390	1100

Energiekosten / Jahr bei permanent reduziertem Betrieb

Luftwechselrate [h ⁻¹]	Stromverbrauch [kw/h]	Angenommener Strompreis [ct]	Kosten pro Jahr [€]	
10	2103	16,99	357	rsparnis: 33,4 %
20	3155	16,99	536	Spairiis. 33,4 70

^{*} Durchschnittlicher Industriestrompreis 2024 lt. Bundesnetzagentur

Absenkbetrieb – Ersparnis

Ersparnis pro Jahr

Betriebsart	1-Schichtsystem (8 – 17 Uhr)	2-Schichtsystem (6 – 22 Uhr)	Absenkung am Wochenende	2-Wochen Betriebsferien
Betriebsfreie Stunden pro Jahr	5475 h	2848 h	2912 h	336 h
Stromverbrauch [kw/h]	2498	2814	2806	3115
Kosten pro Jahr [€]	424	478	476	529
Ersparnis [%]	20,9	10,8	11,2	1,3

Gesamtstunden pro Jahr: 8766 h

Zusammenfassung & Fazit

Zusammenfassung

In unserem Testreinraum konnte ein Absenkbetrieb realisiert werden. Die aufgezeichneten Messdaten zeigen keine Abweichungen der kritischen Parameter

Was ist wichtig?

- ► Komplexere Reinräume können weitere Herausforderungen stellen
- ► Fokus auf eine detaillierte Planung des Ablaufs
- ► Risikobasierte Festlegung geeigneter Grenzwerte und sicherer Zeitintervalle für Absenkung und

Wiederanfahren

Der messtechnische Nachweis der Eignung des Absenkbetriebes stellt den sichersten Weg zur erfolgreichen und nachvollziehbaren Implementierung dar.

Vielen Dank für Ihre Aufmerksamkeit!

LinkedIn: Christoph Weber

Christoph Weber
Fachverantwortliche Person
Reinraum

Tel.: +49 1514 2175773 E-Mail: cweber@testotis.de

LinkedIn: Testo Industrial Services